skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Al_Janaideh, M"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. This paper proposes a sign gradient descent (SGD) algorithm for predicting the three-dimensional folded protein molecule structures under the kinetostatic compliance method (KCM). In the KCM framework, which can be used to simulate the range of motion of peptide-based nanorobots/nanomachines, protein molecules are modeled as a large number of rigid nano-linkages that form a kinematic mechanism under motion constraints imposed by chemical bonds while folding under the kinetostatic effect of nonlinear interatomic force fields. In a departure from the conventional successive kinetostatic fold compliance framework, the proposed SGD-based iterative algorithm in this paper results in convergence to the local minima of the free energy of protein molecules corresponding to their final folded conformations in a faster and more robust manner. KCM-based folding dynamics simulations of the backbone chains of protein molecules demonstrate the effectiveness of the proposed algorithm. 
    more » « less